Package: ewoc 0.3.0

ewoc: Escalation with Overdose Control

An implementation of a variety of escalation with overdose control designs introduced by Babb, Rogatko and Zacks (1998) <doi:10.1002/(SICI)1097-0258(19980530)17:10%3C1103::AID-SIM793%3E3.0.CO;2-9>. It calculates the next dose as a clinical trial proceeds and performs simulations to obtain operating characteristics.

Authors:Marcio A. Diniz <[email protected]>

ewoc_0.3.0.tar.gz
ewoc_0.3.0.zip(r-4.5)ewoc_0.3.0.zip(r-4.4)ewoc_0.3.0.zip(r-4.3)
ewoc_0.3.0.tgz(r-4.4-any)ewoc_0.3.0.tgz(r-4.3-any)
ewoc_0.3.0.tar.gz(r-4.5-noble)ewoc_0.3.0.tar.gz(r-4.4-noble)
ewoc_0.3.0.tgz(r-4.4-emscripten)ewoc_0.3.0.tgz(r-4.3-emscripten)
ewoc.pdf |ewoc.html
ewoc/json (API)
NEWS

# Install 'ewoc' in R:
install.packages('ewoc', repos = c('https://dnzmarcio.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dnzmarcio/ewoc/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

3.30 score 2 stars 20 scripts 171 downloads 27 exports 38 dependencies

Last updated 3 years agofrom:7a31d1adc7. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winNOTENov 03 2024
R-4.4-macNOTENov 03 2024
R-4.3-winNOTENov 03 2024
R-4.3-macNOTENov 03 2024

Exports:dlt_curve_d1classicaldlt_curve_d1extendeddlt_curve_d1phdlt_rateewoc_d1classicalewoc_d1extendedewoc_d1phewoc_simulationinv_standard_doselogitmtd_biasmtd_msemtd_rho_d1extendedopcoptimal_mtdoptimal_toxicitypdlt_d1classicalpdlt_d1extendedpdlt_d1phresponse_d1classicalresponse_d1extendedresponse_d1phstandard_dosestop_rulestop_rule_d1classicalstop_rule_d1extendedstop_rule_d1ph

Dependencies:clicodacodetoolscolorspacedigestdoParalleldoRNGfansifarverforeachFormulaggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrjagsrlangrngtoolsscalestibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Accuracy Indexaccuracy_index
Average Toxicity Numberaverage_toxicity
Plot the DLT curve based on the EWOC classical modeldlt_curve_d1classical
Plot the DLT curve based on the EWOC extended modeldlt_curve_d1extended
Plot the DLT curve based on the EWOC proportional hazards modeldlt_curve_d1ph
Evaluation of the DLT ratedlt_rate
Escalation With Overdose Controlewoc_d1classical
Escalation With Overdose Controlewoc_d1extended
Escalation With Overdose Controlewoc_d1ph
EWOC simulationewoc_simulation
Inverse standardization of the doseinv_standard_dose
Logitlogit
Bias of the MTD estimatesmtd_bias
Mean Square Error of the MTD estimatesmtd_mse
Convert mtd to rho_1 and vice-versamtd_rho_d1extended
Operating characteristics for EWOC simulationsopc
Percent of doses in relation the optimal MTD intervaloptimal_mtd
Percent of doses in relation the optimal toxicity intervaloptimal_toxicity
Generating a probability of DLT function based on the EWOC classical modelpdlt_d1classical
Generating a probability of DLT function based on the EWOC extended modelpdlt_d1extended
Generating a probability of DLT function based on the EWOC Proportional Hazards modelpdlt_d1ph
Generating a binary response function based on the EWOC classical modelresponse_d1classical
Generating a binary response function based on the EWOC extended modelresponse_d1extended
Generating a response function based on the EWOC Proportional Hazards modelresponse_d1ph
Standardization of the dosestandard_dose
Evaluation of the stopping rulestop_rule
Generating a stop rule function for EWOC classical modelstop_rule_d1classical
Generating a stop rule function for EWOC extended modelstop_rule_d1extended
Generating a stop rule function for EWOC proportional hazards modelstop_rule_d1ph